Abstract

The microstructures and conductivities of lead-free ceramics [Bi0.5(Na1-xKx)0.5]TiO3 with x = 0.18 (BNKT) and lead-based ceramics of x(0.94PbZn1/3Nb2/3O3 + 0.06BaTiO3) + (1 - x)PbZryTi1-yO3 with x = 0.5, y = 0.52 (PBZNZT) were investigated. Experimental results show that the activation energy of grain boundary conductivity is higher than that of grain conductivity for the BNKT system, indicating that the Bi2O3 evaporation of grains induces an easy conduction path through grains. However, the activation energy of grain boundary conductivity is lower than that of grain conductivity for the PBZNZT system, which might be attributed to the charged particles in the amorphous phase at grain boundaries, participating in the conduction process. A conduction model of both grain and grain boundary conductivities was proposed, and the microstructural characteristics and AC impedance data of ferroelectric ceramics correlate fairly well, suggesting that impedance spectroscopy is an efficient characterization technique for the grain boundary engineering of ferroelectric ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.