Abstract
Stress corrosion cracking (SCC) of laser powder bed fusion-fabricated 316L was studied under the variation in energy input density to emulate the existence of distinctive types of defects. Various electrochemical polarization measurements were performed in as-received polished and ground states, to elucidate the effect of defect type on corrosion and SCC behaviour in marine solution. The results revealed severe localized corrosion attack and SCC initiation for specimens with a lack of fusion pores (LOF). Moreover, the morphology of SCC was different, highlighting a more dominant effect of selective dissolution of the subgrain matrix for gas porosities and a more pronounced effect of brittle fracture at laser track boundaries for the specimens with LOF pores.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have