Abstract

MicroRNAs have been widely acknowledged as a diagnostic, prognostic, and/or therapeutic biomarker for the progression of OSCC, but the correlation of hsa-miR-101-5p and hsa-miR-155-3p is yet to be established with c-Fos in OSCC and OSMF. An observational study enrolled 40 patients divided into 2 groups: Group I-21 OSMF patients without malignant transformation, Group II-19 patients with locally advanced, large-operable, or metastatic OSCC, after applying inclusion and exclusion criteria. Both miRNAs were extracted and analyzed from the tissue sample excised from the involved site. The linear regression analysis of the expression of hsa-miR-155-3p, hsa-miR-101-5p, and levels of c-fos in OSMF and OSCC patients and its correlation for habits, age, and gender were evaluated. The expression of hsa-miR-101-5p was 0.81 times downregulated in OSCC tissue compared to OSMF, whereas hsa-miR-155-3p and c-fos were both upregulated 9.30 times and 1.75 times, respectively, in OSCC tissue. In Gutkha and tobacco chewers, the hsa-miR-155-3p expression could explain 12.3% (p = 0.031) for Gutkha chewers, whereas c-fos could explain 38.6% of the cases (p = 0.020) for tobacco chewers. The expression of hsa-miR-101-5p and hsa-miR-155-3p explained 43.7% and 59.5% of OSCC cases in alcoholics, respectively. Interestingly, in non-alcoholics, hsa-miR-155-3p and hsa-miR-101-5p were significant predictors of OSCC. Downregulation of tumor-suppressor hsa-miR-101-5p and upregulation of proto-onco hsa-miR-155-3p is responsible for intricate regulation of the progression of OSMF to OSCC via deregulated expression of c-Fos and tobacco chewing and advancing age is significant contributors for OSCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call