Abstract
In one-channel, finite-size Luttinger one-dimensional quantum dots, both Friedel oscillations and Wigner correlations induce oscillations in the electron density with the same wavelength, pinned at the same position. Therefore, observing such a property does not provide any hint about the formation of a Wigner molecule when electrons interact strongly and other tools must be employed to assess the formation of such correlated states. We compare here the behavior of three different correlation functions and demonstrate that the integrated two point correlation function, which represents the probability density of finding two particles at a given distance, is the only faithful estimator for the formation of a correlated Wigner molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.