Abstract
The capability of density-functional theory to deal with the ground state of strongly correlated low-dimensional systems, such as semiconductor quantum dots, depends on the accuracy of functionals developed for the exchange and correlation energies. Here we extend a successful approximation for the correlation energy of the three-dimensional inhomogeneous electron gas, originally introduced by Becke [J. Chem. Phys. 88, 1053 (1988)], to the two-dimensional case. The approach is based on nonempirical modeling of the correlation-hole functions satisfying a set of exact properties. Furthermore, the electron current and spin are explicitly taken into account. As a result, good performance is obtained in comparison with numerically exact data for quantum dots with varying external magnetic field, and for the homogeneous two-dimensional electron gas, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.