Abstract
Finite size armchair graphene nanoribbons (GNRs) of different families are theoretically studied using the Hubbard model in both mean-field and GW approximations, including spin correlation effects. It is shown that correlation primarily affect the properties of topological end states of the nanoribbons. A representative structure of each of the three GNR families is considered but the seven-atom width nanoribbon is studied in detail and compared to previously published experimental results, showing a clear improvement when correlations are included. Using isolated spin contributions to scanning tunneling microscopy (STM) simulations, spin-polarized measurements in STM are also suggested to help distinguish and highlight correlation effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.