Abstract

We present an accurate implementation of total-energy calculations into the local-density approximation plus dynamical mean-field theory $(\text{LDA}+\text{DMFT})$ method. The electronic structure problem is solved through the full-potential linear muffin-tin orbital and Korringa-Kohn-Rostoker methods with a perturbative solver for the effective impurity suitable for moderately correlated systems. We have tested the method in detail for the case of Ni, and investigated the sensitivity of the results to the computational scheme and to the complete self-consistency. It is demonstrated that the $\text{LDA}+\text{DMFT}$ method can resolve a long-standing controversy between the LDA/generalized gradient approximation density-functional approach and experiment for equilibrium lattice constant and bulk modulus of Mn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.