Abstract
Fused filament fabricated (FFF) parts generally show anisotropic mechanical properties. Moreover, the anisotropy in FFF-printed parts varies with polymeric materials, depending on their characteristic relaxation and/or crystallization behavior. To acquire in-depth understanding of the mechanical anisotropy induced by the FFF technique, long chain polyamide 12 (PA12) was chosen for an investigation of the effect of printing temperatures on the microstructures and the mechanical properties of FFF-printed parts. It is found that increasing platform temperature gives rise to an increase in crystallinity and lamellae thickness, slightly improving the tensile strength of the PA12 parts with the deposited strands parallel to the loading direction (i.e. raster angle = 0°). Increasing nozzle temperature promotes large neck length and prolongs the weld time that permits molecular diffusion and entanglements at the weld zone. This significantly enhances the inter-filament bond quality revealed by the tensile strength of 90° specimens. Ultimately, the mechanical anisotropy of PA12 parts drops from 40% to 10%, as the nozzle temperature changes from 190 °C to 250 °C. Moreover, a power-law dependence of the mechanical anisotropy on the weld time is observed in PA12 parts. This suggests that the mechanical anisotropy of FFF-printed PA12 parts is determined by molecular diffusion at the weld zone, rather than by crystallization behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.