Abstract

The use of medicinal plants for self-medication of minor health conditions has become a widespread practice in contemporary society. Few consumes, however, question the contamination of these products with toxic factors resulting from the planet's increasingly polluted environment. This paper presents the levels of five toxic elements (As, Cr, Pb, Cd, and Hg) and nine organochlorine pesticides (hexachlorobenzene (HCB), lindane, heptachor, aldrin, dieldrin, endrin, p,p'DDE, p,p'DDD, and p,p'DDT) in 14 brands of regularly consumed medicinal products in Romania. The toxic elements content was determined using energy-dispersive X-ray fluorescence (EDXRF) technique, and organochlorine pesticide residues (OPCs) were quantified using gas-chromatographic method, equipped with electron capture detector (GC-ECD). The results show that in the case of Cr, Cd, and Hg, the concentrations exceeded the limit values established by World Health Organisation (WHO) for raw herbal material. The higher level of OPCs (such as p,p'DDD, p,p'DDT, aldrin, and dieldrin) was found in the samples of Hypericum perforatum-St. John's wort, Crataegus monogyna-hawthorn, and Epilobium parviflorum-hoary willowherb. The correlations between the content of toxic elements and pesticides were determined by statistical analysis. Hierarchical clustering technique was used to detect natural grouping between the toxic elements and pesticides. For herb samples, four clusters were identified, the strongest correlated cluster consisting of Pb, HCB, Cr, and Hg. A further analysis within this cluster suggested that Cr levels are statistically different from the rest of the elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call