Abstract
Lipid compositions of mammalian erythrocyte membranes are different among species. Therefore, the information on hemolysis from mammalian erythrocytes is useful to understand membrane properties of human erythrocytes. In this work, pressure-induced hemolysis and hypotonic one were examined using erythrocytes of human, sheep, cow, cat, dog, pig, horse, rat, and mouse. Pressure-induced hemolysis was suppressed by membrane sphingomyelin, whereas hypotonic hemolysis decreased upon increment of cell diameter. Mass spectra of erythrocyte membrane lipids demonstrated that sphingomyelin with an acyl chain 24:1 was associated with the suppression of pressure-induced hemolysis. In cow erythrocytes, pressure-induced hemolysis was greatly suppressed and the detachment of cytoskeletal proteins from the membrane under hypotonic conditions was also inhibited. Taken together, these results suggest that sphingomyelin with 24:1 fatty acid plays an important role in the stability of the erythrocyte membrane, perhaps via cholesterol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.