Abstract

Cholesterol suppresses the hemolysis and the detachment of cytoskeletal proteins from bilayer in the human erythrocyte membrane under stress conditions. However, there is little information on how cholesterol functions. So, examining the role of a short side chain of cholesterol, we used the plant sterols such as β-sitosterol and stigmasterol. Incorporation of sterols into the membrane using a sterol/methyl-β-cyclodextrin complex was confirmed by the mass spectrometry. Hemolysis of human erythrocytes under high hydrostatic pressure (200 MPa) or hypotonic conditions was suppressed by cholesterol, but not by β-sitosterol and stigmasterol. Moreover, the bilayer-cytoskeleton interaction was also strengthened by cholesterol, but not by β-sitosterol and stigmasterol. Taken together, we suggest that the short side chain of cholesterol plays an important role in the membrane stability of human erythrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.