Abstract

Rapid expansion of tumor cells that outpace existing vasculature essential for nutrient and oxygen support as well as waste removal, correlates with profound changes in the microenvironment including angiogenesis, vasodilation, glucose metabolism, and cell cycle perturbations. Since hypoxic cells are up to three times more radioresistant than normoxic cells, identification of hypoxic populations to predict radiotherapeutic outcome is important. The consequences of hypoxia and activated proteins contribute to radioresistant tumors and radiotherapeutic failure. Stereotactic MCa4 tumor tissue biopsies from mouse tumors that were guided by electron paramagnetic resonance (EPR) O2 imaging were examined for hypoxia-induced proteins. The oxygen broadening of narrow EPR spectral lines or, equivalently, the increase in relaxation rates of electron magnetization, report pO2 with 1-2torr resolution in image voxels less than 1 mm3. The pO2 reporter molecule OX063d64 (trityl) was used to acquire the data described here. Trityl appears to be selectively retained in tumors with a half-life of ~30 min. We used an inversion recovery electron spin echo (IRESE) to measure the T1 rate of the trityl inside the tumor bearing leg. We estimate our uncertainty in pO2 measurement to be 1-3torr per voxel. Three hypoxic cell biomarkers, hypoxic-induced factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), and carbonic anhydrase IX (CA9), were examined using the ELISA assay. Quantification of these proteins based on results from the ELISA immunoassay kits indicate a strong correlation between EPR pO2-identified hypoxic fractions (<10torr) and HIF-1α, VEGF, and CA9. We clearly demonstrate that hypoxic regions in tumors generate substantial amounts of HIF- 1α, VEGF, and CA9 protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call