Abstract

The photoluminescence, excitation, and absorption spectra as well as the electrical conductivity of β-Ga2O3:Cr and β-Ga2O3:Cr,Mg single crystals were studied. The as-grown β-Ga2O3:Cr crystals had a green color, the conductivity at about 10−2–10−3 Ω−1 cm−1, and a low yield of Cr3+ impurity luminescence. Annealing in oxygen atmosphere led to a strong increase in Cr3+ red luminescence yield, increase in the resistivity, and changes in the absorption and excitation spectra. Similarly, increases in the Cr3+ luminescence yield and resistivity were observed after codoping of β-Ga2O3:Cr crystals with magnesium (Mg2+). The registered changes in the Cr3+ luminescence yield, electrical conductivity, and in the absorption and excitation spectra are considered to be due to the shift in the Fermi level. In the as-grown β-Ga2O3:Cr crystals, the Fermi level is located near the bottom of the conduction band, and most chromium ions are in the Cr2+ charge state. Annealing in an oxygen atmosphere as well as codoping of the crystals with chromium and magnesium impurities moves the Fermi level toward the middle of the bandgap and recharges the chromium ions to the Cr3+ state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.