Abstract

In this study chemical reduction method is used to synthesize the copper and silver nanoparticles. Chitosan was utilized as a stabilizing agent, a suitable medium for nanoparticle growth, and to stop the oxidation and aggregation of the particles. Various characterization such as FTIR Spectra, UV spectra, PL spectra, XRD, EDAX, TEM and Zeta potential approaches were used to examine the copper and silver nanoparticles. The antibacterial activity was assessed through the disc diffusion method. The antibacterial activity to the selected human pathogens, which included two bacterial pathogens such as S. pyogenes and K. pneumoniae as well as one fungal pathogen, Candida albicans . The size and shape of the synthesized CuNPs and AgNPs were evaluated using TEM. The average size distribution is 23.65 nm for CuNPs and 21.76 nm for AgNPs. Copper and AgNPs show antibacterial efficacy against two bacterial strains and a fungi strain. The AgNPs show significant antibacterial activity in comparison with the Chitosan and CuNPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call