Abstract

We study the effect of indium–gallium–zinc oxide (IGZO) crystallinity on oxygen vacancies that play an important role in the characteristics of IGZO-based devices. Optical and electrical measurements revealed that deep defect levels due to oxygen vacancies are largely eliminated in c-axis-aligned crystal IGZO (CAAC-IGZO), which has increased crystallinity without clear grain boundaries. In this study, the correlation between crystallinity and oxygen vacancy formation has been examined by first-principles calculations to investigate the effect of oxygen vacancies in IGZO. Furthermore, the likelihood of oxygen vacancy formation at an edge portion of single-crystal IGZO has been verified by observations of oxygen atoms at the edge region of the IGZO film by annular bright-field scanning transmission electron microscopy (ABF-STEM). Experimental and calculation results show that the high crystallinity of IGZO is important for the inhibition of oxygen vacancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call