Abstract

Background and objective: Recently, the Filtered Delay-Multiply-and-Sum (F-DMAS) beamformer was successfully applied to Ultrasound Imaging (UI), improving the image quality compared to the conventional data-independent Delay-and-Sum (DAS) beamformer. However, its reconstructed images lead to restricted resolution, contrast, and dark regions in the speckle. Various beamformers based on F-DMAS were proposed to mitigate these issues; some improved resolution and contrast at the expense of more dark regions; others reduced the dark points with lower contrast than the F-DMAS beamformer. This study aims to propose a novel beamformer, improving resolution and contrast while reducing dark points in the speckle.Methods: This study proposes a modified version of the F-DMAS beamformer, using two modifications to compensate for the aforesaid trade-off. Firstly, coupled signals’ Correlation Coefficient (CC) was calculated and compared to a threshold value. The multiplications were applied only to the high-correlated (those whose CC is higher than the threshold value) signals. Secondly, a new Modified Coherence Factor (MCF) was applied to the high-correlated signals. Then, these two new beamformers were combined to reach a novel beamformer entitled “Modified DMAS (MDMAS).”Results: The performance of MDMAS was evaluated using simulating Point-Spread-Function, Cyst phantom, the experimental geabr dataset, and an in vivo dataset. Moreover, we evaluated the performance of the MDMAS beamformer quantitatively. Full-width-half-maximum (FWHM), contrast-ratio (CR), contrast-to-noise-ratio (CNR), speckle signal-to-noise-ratio (sSNR), and generalized-CNR (gCNR) were assessed.Conclusions: This paper modified the conventional F-DMAS beamformer by adaptively multiplying signals. Then, CF was implemented on high correlated signals (MCF) and combined with the adaptive beamformer to compensate for the poor contrast. Results highlight that the MDMAS beamformer outperforms F-DMAS in terms of resolution and contrast without compromising the speckle from the dark region artifact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call