Abstract
Two-dimensional (2D) transducer arrays represent a promising solution for implementing real time three-dimensional (3D) ultrasound elastography. 2D arrays enable electronic steering and focusing of ultrasound beams throughout a 3D volume along with improved slice thickness performance when compared to one-dimensional (1D) transducer arrays. Therefore, signal decorrelation caused by tissue motion in the elevational (out-of-plane) direction needs to be considered. In this paper, a closed form expression is derived for the correlation coefficient between pre- and postdeformation ultrasonic radio frequency signals. Signal decorrelation due to 3D motion of scatterers within the ultrasonic beam has been considered. Computer simulations are performed to corroborate the theoretical results. Strain images of a spherical inclusion phantom generated using 1D and 2D array transducers are obtained using a frequency domain simulation model. Quantitative image quality parameters, such as the signal-to-noise and contrast-to-noise ratios obtained using 1D, 2D, and 3D motion tracking algorithms, are compared to evaluate the performance with the 3D strain imaging system. The effect of the aperture size for 2D arrays and other factors that affect signal decorrelation are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.