Abstract
Prostate cancer detection at early stages is crucial for desirable treatment outcome. Among available imaging modalities, ultrasound (US) elastography is being developed as an effective clinical tool for prostate cancer diagnosis. Current clinical US elastography systems utilise strain imaging where tissue strain images are generated to approximate the tissue elastic modulus distribution. While strain images can be generated in real-time fashion, they lack the accuracy necessary for having desirable sensitivity and specificity. To improve strain imaging, full inversion based elastography techniques were proposed. Among these techniques, a constrained elastography technique was developed which showed promising results as long as the tumor and prostate geometry can be obtained accurately from the imaging modality used in conjunction with the elastography system. This requirement is not easy to fulfill, especially with US imaging. To address this issue, we present an unconstrained full inversion prostate elastography method in conjunction with US imaging where knowledge of tissue geometry is not necessary. One of the reasons that full inversion elastography techniques have not been routinely used in the clinic is lack of clinical validation studies. To our knowledge, no quasistatic full inversion based prostate US elastography technique has been applied in vivo before. In this work, the proposed method was applied to clinical prostate data and reconstructed elasticity images were compared to corresponding annotated histopathology images which is the first quasi-static full inversion based prostate US elastography technique applied successfully in vivo. Results demonstrated a good potential for clinical utility of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.