Abstract
Signal decorrelation is a major source of error in the displacements estimated using correlation techniques for elastographic imaging. Previous papers have addressed the variation in the correlation coefficient as a function of the applied compression for a finite window size and an insonification angle of zero degrees. The recent use of angular beam-steered radio-frequency echo signals for spatial angular compounding and shear strain estimation have demonstrated the need for understanding signal decorrelation artifacts for data acquired at different beam angles. In this paper, we provide both numerical and closed form theoretical solutions of the correlation between pre- and post-compression radio-frequency echo signals acquired at a specified beam angle. The expression for the correlation coefficient obtained is a function of the beam angle and the applied compression for a finite duration window. Accuracy of the theoretical results is verified using tissue-mimicking phantom experiments on a uniformly elastic phantom using beam-steered data acquisitions on a linear array transducer. The theory predicts a faster decorrelation with changes in the beam or insonification angle for longer radio-frequency echo signal segments and at deeper locations in the medium. Theoretical results provide useful information for improving angular compounding and shear strain estimation techniques for elastography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.