Abstract
The compactness of buildings in Denpasar resulted in the formation of urban heat islands (UHI), which can be evaluated through the Urban Thermal Field Variance Index (UTFVI) and Environment Criticality Index (ECI). ECI is the ratio of land surface temperature to the Normalized Difference Vegetation Index (NDVI). It can be transformed into Temperature Criticality Value (TCV) using air temperature and Index-based Built-up Index (IBI). This study aims to identify the UHI intensity, the impact of land cover changes, and its association with the TCV. The study employs Landsat 8 imagery and field measurements data, and the findings demonstrate that the study area was mainly composed of built-up areas that had grown from 2015 to 2021. TFVI indicates the most intense UHI (>0.02) in the built-up areas, whereas the mean value of NDVI suggested a reduction in vegetation density. The density of built-up areas (IBI) had increased, while vegetation had decreased. TCV in 2015 ranged from -11.15°C.IBI to 6.42°C.IBI; 2018 between -9.96°C.IBI to 6.79°C.IBI; and 2021 between -10.84°C.IBI to 6.87°C.IBI showed that the environment had become increasingly critical from 2015 to 2021. A transect analysis revealed that more vigorous UHI intensity, denser buildings, and a more critical environment were present in urban centers compared to the suburbs. The correlation coefficient (r) between TCV and UTFVI was relatively robust (0.75–0.82), indicating that the growth of UHI intensity was associated with a more critical environment. TCV has the strongest (r=0.99) and strong correlation (r>0,80) with Built-up Index but inverse correlation with NDVI. Therefore, limiting the expansion of built-up areas and increasing vegetation could help to control the environment's criticality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have