Abstract

AbstractThe dynamic mechanical properties and electrical conductivity of a class of polyurethane fluoroelastomers filled with different carbon black types and loadings were investigated. In particular, finely structured and coarsely structured carbon blacks were considered. Dynamic mechanical analysis (DMA) on the unfilled fluoroelastomer confirmed the phase‐segregated nature of this copolymer. The dynamic mechanical behavior of elastomeric compounds reinforced with finely structured carbon black was found to be strongly influenced by the filler content above a threshold value. This behavior may be attributed to the formation of carbon black aggregates and three‐dimensional anisotropic structures at increasing filler loading. Such an effect was not observed in compounds filled with coarsely structured carbon black particles, which do not seem to form higher level structures. These observations were supported by calculations on the hydrodynamic effect of the filler on the storage modulus G′ of carbon black–loaded compounds. Electrochemical impedance spectroscopy measurements on filled fluoroelastomers revealed the presence of an electrical percolation threshold for finely structured carbon black–filled compounds that supports the hypothesis of the presence of a three‐dimensional anisotropic network forming at high filler loading. No percolation threshold was found in coarsely structured carbon black–filled compounds in accordance with DMA. These results can provide useful guidelines for the design of high‐performance carbon black–filled polyurethane fluoroelastomers. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.