Abstract

The effects of filler loading on the curing characteristics, swelling behavior, and mechanical properties of natural rubber compounds were studied using a conventional vulcanization system. Recycle rubber powder (RRP), carbon black (CB) (N550), and calcium carbonate (CaCO3) were used as fillers and the loading range was from 0 to 50 phr. Results show that the scorch time, t 2, and cure time, t 90, decrease with increase in filler loading. At a similar filler loading, RRP shows shortest t 2 and t 90 followed by CB and calcium carbonate. The tensile strength, tensile modulus, and hardness increase with increase in CB loading, whereas elongation at break, resilience, and swelling properties show opposite trend. For RRP and calcium carbonate filled natural rubber compounds, the tensile strength increases up to 10 phr and starts to deteriorate at higher filler loading. The other properties such as tensile modulus, hardness, elongation at break, resilience, and swelling percentage show a small change (increase or decrease) with increase in RRP and calcium carbonate loading in natural rubber compounds. Overall results indicate that RRP can be used as a cheapener to replace calcium carbonate in natural rubber compounds where improved mechanical properties are not critical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call