Abstract

Measurement of elastic wave velocities allows engineers to effectively characterize and monitor the stiffness and strength development of the cemented soils. Several correlations between elastic wave velocity and strength, as well as correlations between small-strain modulus and strength, have been proposed for different materials. However, since the physical justification of the stiffness-strength correlation is not fully understood, criticisms and diverse views still exist. This study derived the analytical correlation between the elastic wave velocity (or small-strain stiffness) and the unconfined compressive strength of cemented soil, based on a simple cubic packing of coated equal-sized spheres. The analytical derivation suggested a one-parameter power function between the strength and the wave velocity or stiffness, with the power index of 4 and 2 for wave velocity and stiffness, respectively. To verify the derived correlation model, a first-hand laboratory database was used. Factors affecting the correlations are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call