Abstract
Vaccination is one of the most effective disease control strategies that has contributed to the significant reduction of disease outbreaks and antibiotics usage in salmonid aquaculture. To date, licensing of fish vaccines is to a limited extent based on in vitro correlates of protection, as done for many mammalian vaccines. This is because the immunological mechanisms of vaccine protection have not been clearly elucidated for most fish vaccines. Herein, we provide an overview of the different steps required to establish correlates of protective immunity required to serve as benchmarks in optimizing vaccine production in aquaculture. We highlight the importance of optimizing challenge models needed to generate consistent results used during vaccine development as a basis for establishing immune correlates of protection. Data generated this far shows that antibodies are potentially the most reliable correlates of protective immunity for fish vaccines. Our findings also show that antigen dose can be optimized to serve as a correlate of protection for fish vaccines. Further, there is need to establish signatures of T-cell protective immunity when antibodies fail to serve as proxies of immune protection, particularly for vaccines against intracellular pathogens. We can anticipate that documentation of efficacy for future vaccines in aquaculture, particularly batch testing will be based on in vitro correlates of protective immunity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have