Abstract

High resolution scanning electron microscopy (HR-SEM) is nowadays very popular for different applications in different fields. However, SEM images may exhibit a considerable amount of imaging artifacts, which induce significant errors if the images are used to measure geometrical or kinematical fields. This error is most pronounced in case of full field deformation measurements, for instance by digital image correlation (DIC). One family of SEM artifacts result from positioning errors of the scanning electron beam, creating artifactual shifts in the images perpendicular to the scan lines (scan line shifts). This leads to localized distortions in the displacement fields obtained from such images, by DIC. This type of artifacts is corrected here using global DIC (GDIC). A novel GDIC framework, considering the nonlinear influence of artifacts in the imaging system, is introduced for this purpose. Using an enriched regularization in the global DIC scheme, based on an error function, the scan line shift artifacts are captured and eliminated. The proposed methodology is demonstrated in virtually generated and deformed images as well as real SEM micrographs. The results confirm the proper detection and elimination of this type of SEM artifacts.

Highlights

  • The final published version features the final layout of the paper including the volume, issue and page numbers

  • Images taken by scanning electron microscopy exhibit artifacts that may result in considerable errors if used for determining mechanical deformation fluctuation fields by Digital Image Correlation (DIC)

  • This paper proposes a robust method to deal with scan line shifts, using a systematic approach that does not rely on averaging of images

Read more

Summary

Introduction

The final published version features the final layout of the paper including the volume, issue and page numbers. Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain.

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.