Abstract

AbstractTwo approaches to correcting the partial beam blockage of radar reflectivity in mountainous areas were evaluated using X-band dual polarization radar data from the Hakone mountain region, Kanto, Japan. The comparatively simple digital elevation model (DEM) method calculates the power loss in the received signal based on the geometrical relationship between radar beams and a DEM. The second approach, the modified DEM method, attempts to account for unknown power losses related to ground clutter, hardware calibration errors, etc. Comparison between ground data and reflectivity data corrected by both methods suggests that the DEM method alone was insufficient to correct beam blockage problems but that the modified DEM data were in generally good agreement with the ground data. The authors also estimated 10-min rainfall amounts using reflectivity corrected by the modified DEM method and compared these with data from a network of rain gauges in the mountainous region. In general, the results show good agreement between radar estimates and rain gauge measurements. On the basis of their results, the authors conclude that the modified DEM method offers a suitable solution to the problem of beam blockage in mountainous regions, provided that the beam blockage rate is less than 80%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.