Abstract
The etch rate of deep features in silicon, such as trenches and vias, can vary significantly with the feature aspect ratio (AR). Small AR features generally etch faster than large AR features. The reasons for this AR dependence include a slowing of the etch rate with increasing AR due to the necessary transport of molecules into and out of the features as well as ion flux reductions at feature bottom due to the angular spread of the ion flux and ion deflection caused by differential charging of the microstructures. Finding ways to reduce, eliminate, or reverse this AR dependence is both an active subject of research and difficult. In this work, instead of focusing on methods to reduce or prevent AR dependence in an etch process, the authors focus on methods to correct it after the fact. The authors show that an inhibitor film deposition step can be used under some circumstances to allow feature depth disparities to be corrected. This process can be used to correct feature depth disparities whenever the AR dependence of the inhibitor film deposition step is worse (larger) than the AR dependence of the following inhibitor etch step. To test the theory, a plasma process through SF6/C4F8/Ar mixtures was used to both produce trenches of various ARs having significant depth disparities and correct those disparities. The etch depth of small AR features can be held essentially constant while that of larger AR features is increased to match or even exceed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.