Abstract

Laser speckle spatial contrast analysis (LSSCA) is superior to laser speckle temporal contrast analysis (LSTCA) in monitoring the fast change in blood flow due to its advantage of high temporal resolution. However, the application of LSSCA which is based on spatial statistics may be limited when there is nonuniform intensity distribution such as fiber-transmitting laser speckle imaging. In this study, we present a normalized laser speckle spatial contrast analysis (nLSSCA) to correct the detrimental effects of nonuniform intensity distribution on the spatial statistics. Through numerical simulation and phantom experiments, it is found that just ten frames of dynamic laser speckle images are sufficient for nLSSCA to achieve effective correction. Furthermore, nLSSCA has higher temporal resolution than LSTCA to respond the change in velocity. LSSCA, LSTCA and nLSSCA are all applied in the fiber-transmitting laser speckle imaging system to analyze the change of cortical blood flow (CBF) during cortical spreading depression (CSD) in rat cortex respectively, and the results suggest that nLSSCA can examine the change of CBF more accurately. For these advantages, nLSSCA could be a potential tool for fiber-transmitting/endoscopic laser speckle imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.