Abstract

We describe a method to simulate Hamiltonian evolution on a quantum computer by repeatedly using a superposition of steps of a quantum walk, then applying a correction to the weightings for the numbers of steps of the quantum walk. This correction enables us to obtain complexity which is the same as the lower bound up to doublelogarithmic factors for all parameter regimes. The scaling of the query complexity is given. This technique should also be useful for improving the scaling of the Taylor series approach to simulation, which is relevant to applications such as quantum chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.