Abstract

The CBWH (corrected background-weighted histogram) scheme can effectively reduce backgrounds interference in target localization. But it still has the problem of scale and spatial localization inaccuracy. To solve the above issues, we proposed a method which generates a color probability distribution by taking advantage of the targets salient features. In the binary image, we calculate the invariant moment and thus to resize the tracking window of the next frame. A simple background-weighted model updating method is adopted to adapt to the complex background in tracking. Experimental results show that the proposed algorithm improves the robustness of object tracking by self-adaptive kernel-bandwidth updating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.