Abstract
The background-weighted histogram (BWH) algorithm proposed by Comaniciu et al. attempts to reduce the interference of background in target localisation in mean-shift tracking. However, the authors prove that the weights assigned to pixels in the target candidate region by BWH are proportional to those without background information, that is, BWH does not introduce any new information because the mean-shift iteration formula is invariant to the scale transformation of weights. Then a corrected BWH (CBWH) formula is proposed by transforming only the target model but not the target candidate model. The CBWH scheme can effectively reduce background's interference in target localisation. The experimental results show that CBWH can lead to faster convergence and more accurate localisation than the usual target representation in mean-shift tracking. Even if the target is not well initialised, the proposed algorithm can still robustly track the object, which is hard to achieve by the conventional target representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.