Abstract

The increasing importance of utilizing new technologies, such as GNSS (Global navigation satellite system) devices, total stations, drones, scanners, etc., in forestry has become evident with the development of these tools. Combined with precise GNSS devices, UAVs represent an efficient tool that facilitates field measurements and reduces time spent in the field while also providing highly accurate data. To accurately determine the application of spatial data for calculating the longitudinal slope of forest/logging roads in a research project, measurements based on UAVs were conducted and compared with GNSS data. GNSS data were considered the reference values for the studied area, assuming that satellite positions and internet signals were good. An accurate longitudinal slope was necessary to define fuel consumption on forest/logging roads and slopes throughout the project and to verify the calculation method that could be applied for such or similar terrain conditions and overgrowth. The main goal of this research phase was not to study fuel consumption but to obtain an accurate longitudinal profile of forest/skid roads on rocky terrain that is not overgrown or poorly grown. The study put forth two hypotheses, one of which was ultimately confirmed, while the other was refuted. The results show no significant differences when comparing the absolute elevation of the points in the profiles for defining the longitudinal slope of the road using the program for designing forest/skid roads. While applying such a method of data collection to create the main projects for the (re)construction of forest/skid roads, there are significant deviations in earthwork masses. There was a difference of over 22.64% in one of the types of earthwork excavation on the designed forest road, so the method implemented in the research does not give sufficiently accurate results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call