Abstract
This paper attempts to make the link between two of Corrado Gini’s contributions to statistics: the famous inequality measure that bears his name and his work in the early days of balanced sampling. Some important notions of the history of sampling such as representativeness, randomness, and purposive selection are clarified before balanced sampling is introduced. The Gini index is described, as well as its estimation and variance estimation in the sampling framework. Finally, theoretical grounds and some simulations on real data show how some well used auxiliary information and balanced sampling can enhance the accuracy of the estimation of the Gini index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.