Abstract

Abstract This paper presents a topic modeling approach to corpus-based dialectometry. Topic models are most often used in text mining to find latent structure in a collection of documents. They are based on the idea that frequently co-occurring words present the same underlying topic. In this study, topic models are used on interview transcriptions containing dialectal speech directly, without any annotations or preselected features. The transcriptions are modeled on complete words, on character n-grams, and after automatical segmentation. Data from three languages, Finnish, Norwegian, and Swiss German, are scrutinized. The proposed method is capable of discovering clear dialectal differences in all three datasets, while reflecting the differences between them. The method provides a significant simplification of the dialectometric workflow, simultaneously saving time and increasing objectivity. Using the method on non-normalized data could also benefit text mining, which is the traditional field of topic modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.