Abstract

The success of percutaneous coronary intervention (PCI) has been limited by restenosis and stent thrombosis. Delayed or incomplete endothelial regeneration is believed to be a key factor responsible for these events. Developing a stent with an accelerated healing profile may be of benefit. We aimed to evaluate the feasibility and safety of seeding a bare metal stent (BMS) with human trophoblastic endovascular progenitor cells (hTEC) derived from human embryonic stem cells. A porcine coronary artery model was used to compare the rate and extent of endothelial regeneration and the degree of neointimal proliferation. Characterisation of hTEC confirmed a mixed progenitor and endothelial cell phenotype. The biodistribution and fate of hTEC were studied using radiolabelled 111Indium oxine and fluorescent in situ hybridisation. Scanning electron microscopy showed earlier endothelial coverage in hTEC-seeded stents as compared to similar BMS. hTEC-seeded BMS achieved complete stent coverage in three days. Quantitative coronary angiography, intravascular ultrasound assessment and histomorphometry showed no difference in neointimal hyperplasia between hTEC-seeded and control BMS. hTEC seeding of coronary stents is a novel and safe approach to accelerate endothelial regeneration without increasing neointimal proliferation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call