Abstract

In nature, high-speed raindrops often impact and spread on particulate surfaces (e.g., soil, plant leaves with spores or pollen). We study the dynamics of droplet impact on a loosely packed monolayer of particles by combining experimental and mathematical approaches. We find that the presence of mobile particles lowers the critical impact velocity at which the droplet exhibits corona splashing, as the particle area fraction is systematically increased. We rationalize this experimental observation by considering the jamming of frictional particles at the spreading rim. Elucidating the splashing transition of the drop on a particulate bed can lead to a better understanding of soil loss and erosion from falling raindrops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call