Abstract

Abstract. Cornice fall avalanches endanger life and infrastructure in Nybyen, a part of Svalbard's main settlement Longyearbyen, located at 78° N in the High Arctic. Thus, cornice dynamics – accretion, cracking and eventual failure – and their controlling meteorological factors were studied along the ridgeline of the Gruvefjellet plateau mountain above Nybyen in the period 2008–2010. Using two automatic time-lapse cameras and hourly meteorological data in combination with intensive field observations on the Gruvefjellet plateau, cornice process dynamics were investigated in larger detail than previously possible. Cornice accretion starts directly following the first snowfall in late September and October, and proceeds throughout the entire snow season under a wide range of air temperature conditions that the maritime winter climate of Svalbard provides. Cornice accretion is particularly controlled by distinct storm events, with a prevailing wind direction perpendicular to the ridge line and average wind speeds from 12 m s−1. Particularly high wind speeds in excess of 30 m s−1 towards the plateau ridgeline lead to cornice scouring and reduce the cornice mass both vertically and horizontally. Induced by pronounced air temperature fluctuations which might reach above freezing and lead to midwinter rainfall events, tension cracks develop between the cornice mass and the plateau. Our measurements indicate a linear crack opening due to snow creep and tilt of the cornice around a pivot point. Four to five weeks elapsed between the first observations of a cornice crack until cornice failure. Throughout the two snow seasons studied, 180 cornice failures were recorded, of which 70 failures were categorized as distinctive cornice fall avalanches. A clear temporal pattern with the majority of cornice failures in June was found. Thus only daily air temperature could determine avalanche from non-avalanche days. Seven large cornice fall avalanches reached the avalanche fans on which the Nybyen settlement is located. The size of the avalanches was primarily determined by the size of the cornice that detached. The improved process understanding of the cornice dynamics provides a first step towards a better predictability of this natural hazard, but also highlights that any type of warning based on meteorological factors is not an adequate measure to ensure safety of the housing at risk.

Highlights

  • 1.1 Motivation and scope of the studyCornices are broadly defined as wedge-like projections of snow formed by wind deposition on the lee side of a ridgeline or slope inflection (Latham and Montagne, 1970; Montagne et al, 1968)

  • 5.1 Cornice accretion and scouring jellet automatic camera, and the absence of scouring events during the entire snow season 2008/2009, their general im26 cornice accretion days were identified, with a mean pre- pact on cornice development cannot be discussed in more vailing wind direction from SE and a mean wind speed of 12 m s−1 (Fig. 4)

  • The 5.2 Cornice cracking and tilting somewhat higher mean accretion wind speed observed for the Gruvefjellet site compared to the 5–10 m s−1 stated by We observed numerous cornice cracks between the plateau

Read more

Summary

Introduction

Cornices are broadly defined as wedge-like projections of snow formed by wind deposition on the lee side of a ridgeline or slope inflection (Latham and Montagne, 1970; Montagne et al, 1968). Cornices and their dynamics have attracted the curiosity and concern of both scientists and mountaineers in the past, due to their particular shapes and their ability to trigger avalanches when breaking off (Latham and Montagne, 1970). In the study area in Svalbard, cornices form every winter along the lee edges of extensive plateau mountains.

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.