Abstract
Renewable resources such as lignocellulosic biomass are effective at producing fermentable sugars during enzymatic hydrolysis when pretreated. Optimizing pretreatment methods for delignification while maintaining sustainability and low processing costs requires innovative strategies such as reusing greenhouse gas emissions for materials processing. Corn stover, an agricultural waste residue, was pretreated with 2.2 M Na2CO3 produced from CO2 captured via absorption in a 5 M NaOH solution. Composition analysis of the pretreated corn stover exhibited higher cellulose content (40.96%) and less lignin (16.50%) than the untreated biomass. Changes in the chemical structures are visible in the FTIR-ATR spectra, particularly in the cellulose and lignin-related absorption bands. The sugar release from hydrolysis was evaluated at different time intervals and by varying two enzyme ratios of CTec2-to-HTec2 (2:1 and 3:1). Enzymatic hydrolysis produced higher and more stable glucose yields for the pretreated biomass, surpassing 90% after 24 h using the 3:1 enzyme ratio. Sugar concentrations notably increased after pretreatment and even more when using the cellulase-rich enzyme solution. The maximum glucose, xylose, and arabinose recovered were 44, 19, and 2.3 g L−1. These results demonstrate the viability of capturing CO2 and converting it into an efficient Na2CO3 pretreatment for corn stover biomass. Additional processing optimizations depend on the combination of physicochemical parameters selected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.