Abstract

When reaching movements are made during passive constant velocity body rotation, inertial Coriolis accelerations are generated that displace both movement paths and endpoints in their direction. These findings directly contradict equilibrium point theories of movement control. However, it has been argued that these movement errors relate to subjects sensing their body rotation through continuing vestibular activity and making corrective movements. In the present study, we evaluated the reaching movements of five labyrinthine-defective subjects (lacking both semicircular canal and otolith function) who cannot sense passive body rotation in the dark and five age-matched, normal control subjects. Each pointed 40 times in complete darkness to the location of a just extinguished visual target before, during, and after constant velocity rotation at 10 rpm in the center of a fully enclosed slow rotation room. All subjects, including the normal controls, always felt completely stationary when making their movements. During rotation, both groups initially showed large deviations of their movement paths and endpoints in the direction of the transient Coriolis forces generated by their movements. With additional per-rotation movements, both groups showed complete adaptation of movement curvature (restoration of straight-line reaches) during rotation. The labyrinthine-defective subjects, however, failed to regain fully accurate movement endpoints after 40 reaches, unlike the control subjects who did so within 11 reaches. Postrotation, both groups' movements initially had mirror image curvatures to their initial per-rotation reaches; the endpoint aftereffects were significantly different from prerotation baseline for the control subjects but not for the labyrinthine-defective subjects reflecting the smaller amount of endpoint adaptation they achieved during rotation. The labyrinthine-defective subjects' movements had significantly lower peak velocity, higher peak elevation, lower terminal velocity, and a more vertical touchdown than those of the control subjects. Thus the way their reaches terminated denied them the somatosensory contact cues necessary for full endpoint adaptation. These findings fully contradict equilibrium point theories of movement control. They emphasize the importance of contact cues in adaptive movement control and indicate that movement errors generated by Coriolis perturbations of limb movements reveal characteristics of motor planning and adaptation in both healthy and clinical populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.