Abstract

Gd2O3:Ln@mSiO2 hollow nanospheres (Gd2O3:Ln hollow spheres coated by a mesoporous silica layer) were successfully synthesized through a self-template method using Gd(OH)CO3 as template to form hollow precursors (named HPs), which involved the incorporation of the rare earth compound into the interior of the hydrophilic carbon shell, followed by coating with a mesoporous silica shell, and subsequent calcination in air. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric and differential thermal analyses (TG-DTA), photoluminescence spectroscopy, kinetic decays as well as N2 adsorption/desorption were employed to characterize the composites. The results indicate that the uniform Gd2O3:Ln@mSiO2 composite with the particle size around 300 nm maintains the spherical morphology and good dispersibility of the precursor. Interestingly, the composite has a double-shell structure including an inner shell of Gd2O3 and an outer shell of mesoporous silica. Moreover, they also exhibit bright red (Eu3+, 5D0→7F2) down-conversion (DC) emission and characteristic up-conversion (UC) emissions of Yb3+/Er3+. Under beam excitation, the hollow structured sample emits, which should have potential applications in biomedicine and other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call