Abstract

Combined use of thermal analysis techniques can realize complementarity of different characterization methods. Comprehensive thermal analysis with both thermogravimetric analysis and differential thermal analysis (TG/DTA) can measure not only mass change of a sample but also its temperature change during programmed heating-induced reaction or phase transition processes, thereby obtaining multiaspect thermal information of the material such as dehydration, structural decomposition, phase change and thermal stability. This study proposes and develops a MEMS chip-based TG/DTA microsystem that integrates both programmed heating and detecting elements into a TG chip and a DTA chip to enable the microinstrument performing TG/DTA joint characterization under microscope observation. The TG chip contains a self-heating resonant microcantilever to measure heating-induced mass change of a sample and the DTA chip is with a microheater and a temperature-detecting thermopile integrated on a suspended thermal-insulating diaphragm. Only nanogram and microgram-level samples are needed for the TG and DTA chips, thereby achieving safe measurement to energetic materials such as strong oxidants. The chip-based microinstrument surpasses the state-of-the-art commercial TG/DTA instruments that have, in the long term, suffered from large sample-amount (milligram level) requirements and have been unable to measure energetic materials. Compared with commercial instruments, the chip-based microinstrument is advantageous given its more accurate analysis, much higher heating rate, much smaller instrument volume and much lower power consumption, etc. The microinstrument has been fabricated by using wafer-level MEMS techniques. Testing results show that the mass-detection sensitivity of the TG-chip is as high as 0.45 Hz/pg in air and the temperature sensitivity of the DTA chip achieves 2.9 mV/K under the high heating rate of 25 °C/s. The strong oxidant of KMnO4 is analyzed with the TG/DTA joint characterization under microscopic observation. At the same time as microscope observation of the thermal decomposition phenomena, two-step thermal decomposition process of KMnO4 is identified and the thermal decomposition temperatures are obtained. The TG/DTA microinstrument is promising to be applied for study of various materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call