Abstract

Nanowire-based light-emitting devices require multi-quantum well heterostructures with high room temperature optical efficiencies. We demonstrate that such efficiencies can be attained through the use of ZnO/Zn(1−x)MgxO core–shell quantum well heterostructures grown by metal organic vapor phase epitaxy. Varying the barrier Mg concentration from x = 0.15 to 0.3 leads to the formation of misfit induced dislocations in the multi-quantum wells. Correlatively, temperature dependent photoluminescence reveals that the radial well luminescence intensity decreases much less rapidly with increasing temperature for the lower Mg concentration. Indeed, about 54% of the 10 K intensity is retained at room temperature with x = 0.15, against 1% with x = 0.30. These results open the way to the realization of high optical efficiency nanowire-based light-emitting diodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call