Abstract
A core-shell covalent organic framework encapsulated Co1.2Fe1.8O4 magnetic particles (CFO@COF) was designed and prepared successfully to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation. It displays amazing catalytic reactivity since the unique interior structure and synergistic effect between COF shell and CFO core, reaching 99.8% removal of SMX (10 mg/L) within 30 min and 90.8% TOC removal. The synergy between bimetals vests high reactivity to CFO core. And the outer COF shell can stabilize the CFO core under intricate reaction conditions to restrain the leaching of Co ions (decreased from 0.75 to 0.25 mg/L). Further investigation compared the activation mechanism in two different system, CFO/PMS system and CFO@COF/PMS system. The result showed that the radical mechanism controlled by SO4⋅- guided the SMX degradation in CFO/PMS system whereas the 1O2 played a pivotal role in CFO@COF/PMS system called non-radical leading. The influences of various factors on degradation experiments and SMX degradation pathway were also studied. Most importantly, risk assessment in CFO@COF/PMS/SMX system was estimated via “ecological structure activity relationships”. In most case, the toxicities of intermediates were lower than the initial samples, which confirmed the effectiveness of CFO@COF/PMS/SMX system in the reduction of toxicity of SMX.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.