Abstract

Surface-enhanced Raman scattering (SERS) is a promising technique for rapid detection of pesticide residues. However, conventional SERS substrates require extraction processes which are time consuming and they also lack selectivity, stability and reproducibility. Herein, we present a multifunctional stable zero-valent iron based core-shell substrate. It combines magnetic separation, selective adsorption by molecular imprinting technique and sensitive detection of carbaryl by SERS. The core-shell substrate was successfully prepared by immobilizing silver on the surface of zero-valent iron microspheres. Subsequent molecular imprinting on the bimetallic magnetic silver microspheres ensured selective removal and detection. The substrate exhibited magnetization saturation of 8.89 emu/g providing efficient analyte separation. It showed high sensitivity and selectivity toward carbaryl detection to nanomolar concentration level. Linear regression models for peaks at Raman shift 1599 cm−1 and 2233 cm−1 demonstrated a good linear fit with R2=0.9738 and R2=0.8952 respectively. The composite was successfully applied on spiked water samples resulting in average recovery rate of 89%. The findings of this study demonstrate great substrate potential for application in separation and detection of trace quantities of chemical contaminants for environment safety and protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call