Abstract

We propose a novel high performance radiation detector and imaging sensor by a ground-breaking core-shell diode array design. This novel core-shell diode array are expected to have superior performance respect to ultrahigh radiation hardness, high sensitivity, low power consumption, fast signal response and high spatial resolution simultaneously. These properties are highly desired in fundamental research such as high energy physics (HEP) at CERN, astronomy and future x-ray based protein crystallography at x-ray free electron laser (XFEL) etc.. This kind of detectors will provide solutions for these fundamental research fields currently limited by instrumentations. In this work, we report our progress on the development of core-shell diode array for the applications as high performance imaging sensors and particle detectors. We mainly present our results in the preparation of high aspect ratio regular silicon rods by metal assisted wet chemical etching technique. Nearly 200 μm deep and 2 μm width channels with high aspect ratio have been etched into silicon. This result will open many applications not only for the core-shell diode array, but also for a high density integration of 3D microelectronics devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.