Abstract
Hybrid perovskite possesses excellent photoelectric properties, including large light-absorption capacity and high carrier mobility, and is an ideal light-absorbing material for photoelectric devices. The grain size and compactness of hybrid perovskite are key factors affecting the performance of photoelectric devices. The photocurrent and photoresponsivity of these devices are relatively low because of the rapidly recombined photoexcited electron-hole pairs in hybrid perovskite. Herein, we develop a facile two-step chemical vapor deposition (CVD) method to synthesize a high-quality van der Waals (vdWs) MAPbI3/graphene heterostructure for high-performance image sensor. We introduced inorganic sources (PbI2) to vdWs epitaxially grown PbI2 film on a seamless graphene monolayer film template through CVD. Methylammonium iodide (MAI) was then reintroduced to prepare the vdWs MAPbI3/graphene heterostructure. The MAPbI3 layer is composed of densely packed, large-size grains and displays a smooth surface. High photoresponsivity of 107 A/W is achieved in the corresponding photodetector. Inspired by the human visual system, we designed a flexible photodetector array containing (24 × 24) pixels, achieving perfect image recognition and color discrimination. Our study may greatly facilitate the construction of high-performance optoelectronic devices in artificial retina, biomedical imaging, remote sensing, and optical communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.