Abstract
This study aimed to develop and validate a simple and efficient surface-enhanced Raman spectroscopy (SERS) method to determine flunixin meglumine (FM) residues in animal tissues through using core-shell Au@MIL-100 (Fe) as enhanced substrate. Au@MIL-100 (Fe) composite material was synthesized by coating metal-organic framework materials (MOFs) on the surface of gold nanoparticles using the solvothermal method. Transmission electron microscopy (TEM), UV–vis spectrum, SERS spectrum, X-ray diffraction (XRD), Infrared spectrum (FT-IR), and EDX elemental mapping results revealed that the structural composition of the compound has good properties with localized surface plasmon resonance (LSPR) properties, high adsorption capacity, excellent SERS sensitivity and stability. When it was used as SERS substrate, the results of quantitative analysis of FM in pork showed a linear range of 0.10–50 mg·L−1 with a correlation coefficient (R2) of 0.9819, the limit of detection (LOD) of 0.15 mg·g−1, the recovery rate of 88.94%∼104.77%, the intra- and inter- batch relative standard deviation (RSD) of 3.57%∼14.22% and 0.18%∼3.44% respectively. Further verification results of the existing standard methods showed no significant difference between the SERS and UV methods (P < 0.05), as well as demonstrating that the SERS method has optimal precision, accuracy, and practicality. These results exposed that Au@MIL-100 (Fe) as a SERS substrate has great potential in rapid and on-site detection analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.