Abstract
Recently, network traffic has been growing exponentially and almost reached the physical capacity limit of single mode fibers. Space division multiplexing (SDM) is a promising technology to overcome the looming fiber capacity crunch. Especially, few-mode multi-core fibers (FM-MCFs) can aggregate multiple cores into one fiber and two or more modes can be transmitted in one core, which can greatly increase the capacity yet introduce crosstalk constraints including inter- and intra-core crosstalk. To our best knowledge, there is no accurate crosstalk calculation model study in SDM optical networks with FM-MCFs. To address this issue, we first introduce the machine learning into the crosstalk prediction phase and propose a novel crosstalk estimation model (CEM) exploiting the beam propagation method called CEM-beam propagation method (BPM)-machine learning (ML), which can be used to evaluate the crosstalk during the design for the resource allocation scheme. Then, a crosstalk aware core, mode, and spectrum assignment (CA-CMSA) strategy is presented. The simulation results for crosstalk estimation at the wavelength level indicate that the crosstalk at lower frequencies is less than that at higher frequencies. Thus, the lower frequencies are always the first choice in the spectrum resource assignment phase. In addition, for our specific training set, the Levenberg-Marquardt (LM) algorithm based on machine learning performs better on the training, including regression values measurement and time consumption. The simulation results of the proposed CA-CMSA scheme also show that the resource allocation algorithm based on LM can improve resource utilization without increasing total connection set-up time. Thus, it will be the best choice for the resource assignment in SDM networks with FM-MCFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.