Abstract
We study a paradigmatic system with long-range interactions: the Hamiltonian mean-field (HMF) model. It is shown that in the thermodynamic limit this model does not relax to the usual equilibrium Maxwell-Boltzmann distribution. Instead, the final stationary state has a peculiar core-halo structure. In the thermodynamic limit, HMF is neither ergodic nor mixing. Nevertheless, we find that using dynamical properties of Hamiltonian systems it is possible to quantitatively predict both the spin distribution and the velocity distribution functions in the final stationary state, without any adjustable parameters. We also show that HMF undergoes a nonequilibrium first-order phase transition between paramagnetic and ferromagnetic states.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have