Abstract

This work reports the advances of utilizing a core@double-shell nanostructure to enhance the electrical energy storage capability and suppress the dielectric loss of polymer nanocomposites. Two types of core@double-shell barium titanate (BaTiO3) matrix-free nanocomposites were prepared using a surface initiated atom transfer radical polymerization (ATRP) method to graft a poly(2-hydroxylethyle methacrylate)-block-poly(methyl methacrylate) and sodium polyacrylate-block-poly(2-hydroxylethyle methacrylate) block copolymer from BaTiO3 nanoparticles. The inner shell polymer is chosen to have either high dielectric constant or high electrical conductivity to provide large polarization, while the encapsulating outer shell polymer is chosen to be more insulating as to maintain a large resistivity and low loss. Finite element modeling was conducted to investigate the dielectric properties of the fabricated nanocomposites and the relaxation behavior of the grafted polymer. It demonstrates that confinement of the more conductive (lossy) phase in this multishell nanostructure is the key to achieving a high dielectric constant and maintaining a low loss. This promising multishell strategy could be generalized to a variety of polymers to develop novel nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.